数学中的赋比兴

  • A+
所属分类:青年文摘彩版
摘要

中国诗词都讲究比兴,有深度的文学作品必须要有“义”、有“讽”,有“比兴”。数学亦如是。文学家为了达到最佳意境的描述,不见得忠实地描写现象界,例如贾岛只追究“僧推月下门”或是“僧敲月下门”的意境,而不在乎所说的不同的事实

中国诗词都讲究比兴,有深度的文学作品必须要有“义”、有“讽”,有“比兴”。数学亦如是。

文学家为了达到最佳意境的描述,不见得忠实地描写现象界,例如贾岛只追究“僧推月下门”或是“僧敲月下门”的意境,而不在乎所说的不同的事实。数学家为了创造美好的理论,也不必依随大自然的规律,只要逻辑推导没有问题,就可以尽情地发挥想象力,然而文章终究有高下之分。大致来说,好的文章“比兴”的手法总会比较丰富。

在数学的研究过程 ,我们亦利用比的方法去寻找真理。我们创造新的方向时,不必凭实验,而是凭数学的文化涵养去猜测去求证。

举例而言,三十年前我提出一个猜测,断言三维球面里的光滑极小曲面,其第一特征值等于二。其实我的看法与文学上的比兴很相似。

我们看《洛神赋》:“翩若惊鸿,婉若游龙。荣曜秋菊,华茂春松。兮若轻云之蔽月,飘兮若流风之回雪。”由比喻来刻画女神的体态。

我一方面想象三维球的极小子曲面应当是如何的匀称,一方面想象第一谱函数能够同空间的线性函数比较该有多妙,通过原点的平面将曲面最多切成两块,于是猜想这两个函数应当相等,同时第一特征值等于二。

数学上常见的对比方法乃是低维空间和高维空间现象的对比。我们虽然看不到高维空间的事物,但可以看到一维或二维的现象,并由此来推测高维的变化。我在做研究生时企图将二维空间的单值化原理推广到高维空间,得到一些漂亮的猜测。

事实上,爱因斯坦的广义相对论也是对比各种不同的学问而创造成功的,它是科学史上最伟大的构思,可以说是惊天地而泣鬼神的工作。它统一了古典的引力理论和狭义相对论。爱氏花了十年工夫,基于等价原理,比较了各种描述引力场的方法,巧妙地用几何张量来表达了引力场,将时空观念全盘翻新。

在数学上,对非线性微分方程和流体方程的深入了解,很多时候需要靠计算器来验算。很多数学家有能力做大量的计算,却不从大处着想,没有将计算的内容与数学其他分支比较,没有办法得到深入的看法,反过来说只讲观念比较,不做大量计算,最终也无法深入创新。

有些工作却包含赋比兴三种不同的精义。近五十年来数论上一个伟大的突破是由英国人Birch和Swinneton Dyer提出的一个猜测,开始时用计算器大量计算,找出L函数和椭圆曲线的整数解的联系,与数论上各个不同的分支比较接合,妙不可言,这是赋比兴都有的传世之作。

(赵永兵摘自2008年12月22日

《北京青年报》)

(作者: 字数:1080)

weinxin
金璞玉小说
最新最好看的言情小说,微信号 jpywx8

发表评论

您必须登录才能发表评论!